Michael Hendzel

Michael Hendzel

Michael Hendzel (Ph.D. University of Manitoba)

Adjunct Professor

Department of Oncology
3332 Cross Cancer Institute
Phone: (780) 432-8439
Fax: (780) 432-8892 (fax)
michael.hendzel@ualberta.ca


Structure, Dynamics, and Function in the Cell Nucleus

My laboratory is interested in the chromatin and nonchromatin structures of the cell nucleus, their dynamics, and their relationship to the major functions executed by the cell nucleus (transcription, mRNA processing, DNA replication, DNA repair).   To study these processes, we employ a range of microscopy, biochemistry, and molecular biology techniques. 


Nuclear compartments and their function

It has been known for quite some time that the nucleus is not a homogeneous mass of DNA interspersed within a membrane-bound volume.  Instead, both the genome and non-chromatin structures of the interphase nucleus are commonly seen to concentrate in discrete sites within the nucleus.  These sites are generally referred to as nuclear compartments or nuclear bodies.  While their composition and dynamics is increasingly understood, understanding their function has been more of a challenge.  In order to get a better understanding of how compartmentalization regulates function, we are employing the formation of compartments around DNA double-strand breaks.  These compartments are commonly referred to as ionizing radiation-induced foci despite being dependent on the type of damage (double-strand break) rather than the source of damage (ionizing radiation).  For example, these compartments can also be induced using restriction endonucleases to introduce the double-strand break. 

The Ataxia telangiectasia mutated (ATM) kinase is responsible for much of the kinase signaling that takes place in response to DNA double-strand breaks.  The kinase is inactive in the absence of DNA damage and becomes active and autophosphorylates on serine 1981 when double-strand breaks are present.  Following the induction of double-strand breaks, the ATM kinase enriches in the compartments that form around DNA double-strand breaks.  We have found conditions where we are able to induce double-strand breaks and activate the ATM kinase but prevent the ATM kinase from enriching in these compartments.  We know that, under these conditions, at least some of the ATM substrates are utilized.  The vast number of characterized ATM substrates is allowing us to quantitatively determine the contribution of compartmentalization to the phosphorylation of ATM substrates and the execution of ATM functions. 


Development of “colour” transmission electron microscopy

The contribution of light microscopy to our understanding of cell structure took a major leap forward when the appropriate antibody and nucleic acid probes and fluorescent labels became available.  This allowed individual proteins and nucleic acids to be studied at the single cell level.  Something similar is possible in transmission electron microscopy by using the “energy loss” spectrum instead of the wavelength spectrum of light.  When the electron beam of the transmission electron microscope passes through the specimen, some of the electrons collide with inner shell electrons of the individual elements where the specimen element becomes ionized and the incident electron loses energy.  The amount of energy lost depends on the element that the incident electron has ionized since the ionization energy for the electrons are defined.    This type of transmission electron microscopy, termed electron spectroscopic imaging (ESI), is already a very useful technique for studying the cell nucleus.  Both the phosphorus and nitrogen elements of the specimens generate strong signals that can be imaged.  Because the phosphorus is so much more abundant in nucleic acid than nitrogen whereas proteins contain much less phosphorus relative to the nitrogen, the technique is particularly good at studying nucleic acids and looking at protein interactions with DNA or RNA.  We are collaborating with the Wuest laboratory in the Department of Oncology, University of Alberta, to develop fluorinated and boronated probes, such as antibodies and modified nucleotides, in order to bring colour to the transmission electron microscope.  We anticipate being able to visualize transcription directly in the transmission electron microscope, something that has only been possible in a model organism and information that is lacking with respect to structure-function relationships in the cell nucleus of mammals. 


Other

We have additional research projects in the laboratory that pertain to the contribution of chromatin remodeling proteins with chromatin at sites of DNA double-strand breaks.  We are particularly interested in the Polycomb repressive complex 1, which is a histone H2A E3 ubiquitin ligase and participates in both developmental gene silencing and DNA double-strand break repair.  Evidence currently supports the hypothesis that the high expression of this complex in stem cells and cancer stem cells increases the resistance of cancer stem cells to DNA damage-inducing therapies.   


Selected publications

McDonald, D., G. Carrero, C. Andrin, G. de Vries, and M.J. Hendzel, Nucleoplasmic beta-actin exists in a dynamic equilibrium between low-mobility polymeric species and rapidly diffusing populations. Journal of Cell Biology, 2006. 172(4): p. 541-552.

McManus, K.J., V.L. Biron, R. Heit, D.A. Underhill, and M.J. Hendzel, Dynamic changes in histone H3 lysine 9 methylations - Identification of a mitosis-specific function for dynamic methylation in chromosome congression and segregation. Journal of Biological Chemistry, 2006. 281(13): p. 8888-8897

Ismail, I.H., C. Andrin, D. McDonald, and M.J. Hendzel, BMI1-mediated histone ubiquitylation promotes DNA double-strand break repair. Journal of Cell Biology, 2010. 191(1): p. 45-60.

Raghuram, N., G. Carrero, T.J. Stasevich, J.G. McNally, J. Th'ng, and M.J. Hendzel, Core Histone Hyperacetylation Impacts Cooperative Behavior and High-Affinity Binding of Histone H1 to Chromatin. Biochemistry, 2010. 49(21): p. 4420-4431.

Ismail, I.H., J.P. Gagné, M.C. Caron, D. McDonald, Z. Xu, J.Y. Masson, G.G. Poirier, and M.J. Hendzel, CBX4-mediated SUMO modification regulates BMI1 recruitment at sites of DNA damage. Nucleic Acids Res, 2012. 40(12): p. 5497-510.

Hendzel, M.J., The F-act's of nuclear actin. Curr Opin Cell Biol, 2014. 28C: p. 84-89.

Ismail, I.H., R. Davidson, J.P. Gagne, Z.Z. Xu, G. Poirier, and M.J. Hendzel, Germ-line Mutations in BAP1 Impair its Function in DNA Double-Strand break Repair. Cancer Res, 2014.

Raghuram N., H. Strickfaden, D. McDonald, K. Williams, H. Fang, C. Mizzen, J.J. Hayes, J. Th'ng, and M.J. Hendzel  Pin1 promotes histone H1 dephosphorylation and stabilizes its binding to chromatin. J Cell Biol, 2013. 203(1): p. 57-71. 


Technician
Darin McDonald

Research Associate
Dr. Ismail Ismail

Postdoctoral Fellows
Dr. Hilmar Strickfaden
Dr. Ajit Sharma
Dr. Mohammad Ali